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This work is directed towards the electrochemical characterization of a

high temperature electrolytic cell which simultaneously generates oxygen at

the anode and liquid alkali metals at the cathode. The electrolytic technology

being investigated utilizes the oxygen vacancy conducting solid electrolyte,

yttria-stabilized zirconia, which effectively separates the oxygen evolving

(at La0.89Sr0.!0Mn03) and alkali metal (Li, Na) reducing (from a molten salt at

either Pt or FeSi2) half-cell reactions. In the finally engineered cell liq-

uid alkali metal would be continuously removed from the cathode compartment

and used as an effective reductant for the direct thermochemical refining of

lunar ores to their metallic state with simultaneous oxidation of the alkali

metal to its oxide. The alkali metal oxide would then be reintroduced into

the electrolytic cell to complete the overall system cycle.

RESULTS AND DISCUSSION

There are clear incentives to identify new technical strategies for the

generation of useful chemical species from lunar materials directly on the

Moon's surface. This is a consequence of the obvious high costs associated

with the transportation of necessary materials from the Earth. The eventual

development of a permanent manned base on the Moon's surface leading to even-

tual colonization by people will require a plentiful supply of both oxygen for

breathing and refined metals for the assembly of permanent structures. In

order to accomplish this, technologies must be characterized now for the ex-

traction of oxygen from lunar ores and for their reduction to metal species

by appropriately identified reducing agents, which might themselves be regen-
erated under lunar conditions.

Analysis of lunar soils and rocks collected during the highly successful

Apollo program have shown conclusively the presence of pyroxene type minerals

(iron magnesium calcium silicates), plagioclase feldspars (calcium aluminum

silicates) and ilmenite (iron titanium oxides). Additionally, the presence of

iron-nickel alloys was found, presumably of meteoric origin 1,2. Thus, the

major elements contained in such lunar "ores," from the random samples returned

to Earth during the Apollo program, would appear to be oxygen, silicon, aluminum,

calcium, iron, magnesium, titanium and nickel. Previous workers have suggested

that oxygen might be extracted from ilmenite (FeTiO 3) via its initial chemical

reduction by hydrogen initially transported from the Earth 3-5. Other strategies

suggested for the reduction of lunar metal ores 6,7 have included carbothermic

reduction to give the desired metal species.
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Initial work on the high temperature electrochemistry of simulated lunar
materials was performed on a numberof metal silicate melts using platinum
electrodes. Electrolysis of such melts has been shown to result in the simul-
taneous evolution of oxygen at the anode8-12 and the deposition of a reduced
metal silicon alloy slag at the cathode13-16. This preliminary work by others
clearly demonstrated the feasibility of high temperature molten salt electro-
chemical techniques as a strategy for the simultaneous generation of oxygen
and reduced metal species from lunar type materials. The following technical
limitations have however presented themselves in the direct electrorefining
of molten salt lunar materials:

• Oxygen generated at the anode of a molten silicate electrolytic cell

(CaMgSi206 containing Fe 3+, Co 2+ or Ni 2+) can become partly trapped within the

electrolyte, creating a localized foam in the proximity of the anode. This

can create problems associated both with the efficient removal of oxygen from

the cell and in making such oxygen more susceptible to its electrochemical

reduction at the cathode.

• Molten salt cells operated at temperatures (>1300°C) where many chemical

and electrochemical materials problems would be introduced limiting overall
lifetime.

• Reduced metal or metal silicate species deposited at the cathode of

high temperature molten silicate electrolyte cells will be dendritic in nature

and will eventually lead to inter-electrode shorting. This is a common pro-

blem in both ambient and high temperature electrolytic cells where metals are

deposited. No electrochemical technique or strategy has as yet been identified

to satisfactorily address this issue for metal deposition.

• The continuous removal of reduced solid metallic species from the cathode

would not be practical in such a cell and would consequently be limited to a

batch type operation.

Many of the limitations implied by the above comments are currently being

addressed by a program directed towards the development of an electrolytic

cell which anodically evolves oxygen via an oxygen vacancy conducting solid

electrolyte and simultaneously deposits a liquid alkali metal at the cathode.

Liquid sodium or lithium deposited at the cathode could be continually removed

in the finally engineered cell and used as a valuable reducing agent for the

refining of lunar 'ores' via for example the general chemical reaction:

2Li(or Na) + MO ÷ Li20 + M (I)

where MO is a metal oxide ore on the lunar surface.

cell being developed possesses the general configuration:

cathode I Li+ or Na + 02- conducting I 02 evolving

(FeSi 2 or Pt)/ conducting yttria stabilized l La0.89Sr0.10Mn03molten oxide zirconia I anode
lsalt

The overall electrolytic

®

The anodic reaction in this cell corresponds to

02- ÷ _02 + 2e (2)

with the cathodic reaction being

2Li+(Na) + 2e ÷ 2Li(Na) (3)
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giving the overall reaction

Li20(Na20) ÷ 2Li(Na) + _O 2 (4)

A schematic of the experimental arrangement being developed is shown in Figure

i. Molten salts being evaluated for incorporation into the cathode compart-

ment of this cell include Li20(24m/o)-Na20, Li20(66m/o)B203, and Li20-LiF-LiCI.

As can be seen from Figure i, containment of the alkali oxide containing molten

salts is being accomplished by the use of zirconia based solid electrolytes

stabilized in the cubic form by the introduction of lower valence metal ions.

This introduces oxygen vacancies necessary to produce 02- conductivity at high

temperature. Materials which have frequently 17-23 been introduced to promote

such conductivity have included CaO, Ce203, Y203 and Yb203. By comparing the

oxygen ion vacancy conductivity of the various stabilized zirconias at around

900°C, it appears that highest conductivities (by a factor of 5-10) are real-

ized for the rare earth stabilized materials, compared to those containing

calcia. Previous workers 24 have shown that yttria-stabilized zirconia also

possesses some resistance to corrosion in high temperature silicate melts. Thus,

the presence of trace silicates in alkali metal oxide electrolysis cell should

not be a major technical limitation.
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Figure i. Schematic drawing of yttria stabilized zirconia cell being

developed for the electrolytic generation of alkali metals

and oxygen from molten alkali metal oxide melts.

Investigation of (24m/o)Li20-Na20 molten oxides at 800°C in a stainless

steel container using platinum working and counter electrodes, gave a polari-

zation curve suggesting electrolysis of the melt to form oxygen and alkali metal.

Sodium was observed in the cell after its disassembly. This in part could be

promoted by the direct thermal decomposition of sodium oxide to sodium at the

temperatures used.
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Other investigations were directed towards electrolysis of Li20 in LiCI

(70m/o)-LiF melts. The liquidus curve for this ternary melt is shown in

Figure 2. Melting points were determined using DC resistance measurements.

Ionic conductivity for Li20(5-28m/o) in LiCl(70m/o)-LiF were found to be in
the range 2-4ohm-±cm -I at 600-700°C as determined using AC impedance measure-

ments. A current overpotential curve for the cell

FeSi2 [ (23.9-23.6-52.5)m/o [ ZrO2(8w/o Y203) I La0.89Sr0.10Mn03] Pt
Li20-LiF-LiCI

is shown in Figure 3. The cell had an initial open-circuit voltage of 1.43V

at 7000C and gave current densities at the FeSi 2 electrode of 60mA/cm 2 at

1.0V applied overpotential. Lithium deposition was observed to proceed via

the formation of a series of progressively more negative LixFeSi 2 voltage

plateaus. Oxygen evolution from the anode was found to be Faradaic. The

temperature dependency for cell resistance is shown in Figure 4. The activation

energy obtained from the slope (23.2kcal/mole) agrees well with the activation

energy for oxide ion diffusion through calcia stabilized zirconia 25. Thus,

the overall cell resistance is predominantly due to the solid electrolyte.

Thus, zirconia solid electrolyte geometry will be of importance in the finally

engineered cell. Also, appropriate provision will be necessary for both the

convenient removal of liquid lithium from the cathode compartment and for the

reintroduction of Li20 into the molten salt electrolyte.

The electrochemical results briefly outlined above clearly show the tech-

nical viability of this overall strategy for the indirect electrochemical

refining of lunar ores to produce reduced metals and oxygen.

Figure 2.
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Figure 3.
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